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Abstract
We compare the long time behaviour and approach to thermal equilibrium of the
one-dimensional Caldeira–Leggett model for the master equation in Lindblad
and non-Lindblad forms. We first solve the explicit time evolution for the free
particle and harmonic oscillator systems and show that our results agree with
previous such attempts, and then show that Lindblad and non-Lindblad cases
lead to the same evolution when we take the limitations of the Caldeira–Leggett
model into account.

PACS numbers: 03.65.Yz, 05.00.00, 64.60.De

1. Introduction

The Caldeira–Leggett model [1] is a simple system–reservoir model that can explain the basic
aspects of dissipation in solid state physics, and in the high temperature and weak coupling
limit, can also account for quantum Brownian motion [1–6]. It consists of a particle, which is
also called ‘the system’, that interacts with a heat bath of simple harmonic oscillators through
a linear term.

Time evolution and long time behaviour of the Caldeira–Leggett model has been examined
in the literature using various mathematical approaches such as path integration, stochastic
calculus and others [5–14]. These studies have had a variety of physical motivations ranging
from Caldeira and Leggett’s initial aim of explaining the quantum Brownian motion to
exploration of certain models of quantum measurement [7, 8].

In this study, our main aim will be investigating the long time behaviour of the Caldeira–
Leggett master equation, more specifically the relations between the so-called Lindblad and
non-Lindblad forms of the time evolution. We will first give an outline of the stationary solution
of the Caldeira–Leggett model and its relationship with the thermal equilibrium density matrix
in order to lay down what we expect to see in terms of these already known properties. Then
we will calculate the exact time evolution of the Caldeira–Leggett model with a detailed
discussion of the density matrix at long times. Our calculation of the time evolution of the
density matrix forms the basis of our comparison of the Lindblad and non-Lindblad cases,
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thus we will spend considerable time on it. However, we should note that many basic aspects
of this long time behaviour have been previously obtained in the aforementioned studies, and
the novelty of our results mostly are in the comparison of Lindblad and non-Lindblad forms
of the master equation. Details of our calculational tools and some further discussions can be
found in the appendices.

2. The master equation and the stationary states

The Caldeira–Leggett model is defined by the following Hamiltonian:

H =

HS︷ ︸︸ ︷
1

2m
p2 + V (q) +

Hc︷ ︸︸ ︷
q2

∑
n

κ2
n

2mnω2
n

+

HB︷ ︸︸ ︷∑
n

(
1

2mn

p2
n +

1

2
mnω

2
nq

2
n

)
−

HI︷ ︸︸ ︷
q

∑
n

κnqn

= 1

2m
p2 + V (q) +

∑
n

(
1

2mn

p2
n +

1

2
mnω

2
n(qn − q)2

) (
κn ≡ mnω

2
n

)
(1)

where q, p are the position and momentum operators of the system and {qn}, {pn} are the
position and momentum operators of the bath oscillators, respectively. HS is the system
Hamiltonian, HI is the interaction term and HB is the Hamiltonian for the reservoir. Inclusion
of the counterterm Hc is to avoid a shift due to the coupling in the bare potential V (q)

[13, 15]. For our study, the reservoir oscillators are described by an Ohmic spectral density
with a Lorentz–Drude cutoff function

J (ω) = 2mγ

π
ω

�2

�2 + ω2
. (2)

In the high temperature, weak coupling quantum Brownian motion case in which we are
interested, it can be shown through various methods that the Hamiltonian leads to the following
master equation for the reduced density matrix of the system [1, 16–18]:

d

dt
ρt = − i

h̄
[HS, ρt ] − 2γmkBT

h̄2 [q, [q, ρt ]] − i
γ

h̄
[q, {p, ρt }]. (3)

In this form, the time evolution is not a quantum-dynamical semigroup and it violates
positivity on short timescales [19]. However, one can add a ‘minimally invasive’ term,
− γ

8mkBT
[p, [p, ρt ]], which is negligible compared to the other terms in the high temperature

limit and which brings the equation into the so-called Lindblad form

d

dt
ρt = − i

h̄
[HS, ρt ] − 2γmkBT

h̄2 [q, [q, ρt ]] − γ

8mkBT
[p, [p, ρt ]] − i

γ

h̄
[q, {p, ρt }], (4)

with the relaxation rate γ and the Lindblad operator

A =
√

4mkBT

h̄2 x + i

√
1

4mkBT
p, (5)

which gives the Lindblad evolution [20, 21]

d

dt
ρt = − i

h̄

[
HS +

γ

2
(qp + pq), ρt

]
+ γ

(
AρtA

† − 1

2
A†Aρt − 1

2
ρtA

†A

)
. (6)

Justification of the introduction of the minimally invasive term has been further discussed by
Diosi [22].

Certain conditions have to be met for (3) and (4) to be valid [1, 16–18, 23]:
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(1) The typical timescale over which the state of the system changes appreciably, τR ∼ 1/γ ,
should be much larger than the typical decay time for the correlation functions of the bath
oscillators, τB , which translates into

h̄γ � min{h̄�, 2πkBT }, (7)

(2) The typical system evolution time, 1/ωS , should be large compared to τB

h̄ωS � min{h̄�, 2πkBT }. (8)

This condition is required for the validity of the introduction of the ‘minimally invasive’
term as well as for other steps in the derivation of the master equation. We expect
p ∼ mωSq for the typical momentum and position values, so the ratio of the momentum
double commutator to the position double commutator in (4) is at the order (h̄ωS/kBT )2.
This means it is negligible under this condition, making the Lindblad form of the master
equation valid.

We will stick to these conditions throughout our study. A discussion of the modifications to
the master equation at lower temperatures can be found in [23].

The first step in understanding the implications of the master equation is studying the
stationary solution, i.e. the solution with dρt/dt = 0. The general expectation is that, in the
long time limit, the density matrix is going to reach this solution irrespective of the initial
condition. For the non-Lindblad case, (3), and for a potential V (q) whose spatial variations
are small, the stationary solution in the position representation is given by (see, for example
[7])

〈q1|ρ|q2〉 ≈ N exp

(
−V ((q1 + q2)/2)

kBT
− mkBT (q1 − q2)

2

2h̄2

)
, (9)

which can also be obtained using basic techniques for partial differential equations [11, 24],
where N is a normalization constant. Moreover, for the case of the quadratic potential or the
free particle, this equation is exact.

For the free particle, (V (q) = 0), equation (9) gives the exact thermal equilibrium state,
which can be obtained transforming the familiar expression

〈p1|ρth|p2〉 = 〈p1|N e− p2

2mkB T |p2〉

⎧⎪⎨
⎪⎩

√
1

2πmkBT
e− p2

1
2mkB T p1 = p2

0 otherwise

(10)

into the position representation, using the Fourier transform.
For the harmonic oscillator, V (q) = 1

2mω2q2, the thermal equilibrium density matrix is
given by [25]

〈q1|ρ|q2〉 = N exp

[
− mω

2h̄ tanh (h̄ω/kBT )

(
q2

1 + q2
2

)
+

mω

h̄ sinh (h̄ω/kBT )
q1q2

]
(11)

which clearly does not agree with (9). The source of this disagreement can be traced by
expanding the exponent in (11) in powers of h̄ω/kBT . To the leading order

〈q1|ρ|q2〉 = N exp

[
−mkBT

2h̄2

(
h̄ω

kBT

)2
(q1+ q2)

2

4
− mkBT

2h̄2

(
1+

1

12

(
h̄ω

kBT

)2
)

(q1− q2)
2

]

= N exp

[
− mω2

8kBT
(q1 + q2)

2 − mkBT

2h̄2 (q1 − q2)
2

]
exp

[
− mω2

24kBT
(q1 − q2)

2

]
,

(12)
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which agrees with (9) on the diagonal (q1 = q2), ignoring the higher order terms, but does
not agree with it if we move away from the diagonal where q1 − q2 is comparable to q1 + q2

in magnitude. This should not be surprising, since the term in the exponent that causes the
difference, − mω2

24kBT
(q1 − q2)

2, is at the order (h̄ω/kBT )2 compared to mkBT

2h̄2 (q1 − q2)
2. Also,

we expect mω2q2 ∼ h̄ω, which means mω2

24kBT
(q1 − q2)

2 ∼ h̄ω
kBT

. We already stated that our
master equation is valid in the regime where h̄ω/kBT � 1, thus it is expected that such terms
are not captured by the stationary state of the non-Lindblad master equation. In other words,
by agreeing to use (3) or (4) to investigate the Caldeira–Leggett model, we give up the prospect
to have sensitivity to any higher order terms in h̄ω/kBT .

To summarize, the stationary solution of the free particle Caldeira–Leggett master equation
in the non-Lindblad case is the exact thermal equilibrium density matrix for the free particle.
Thus, reaching the stationary state and reaching the thermal equilibrium are equivalent for
this case. However, for the harmonic oscillator, the stationary solution is not the thermal
equilibrium, but rather, the two agree on the diagonal in the high temperature limit. High
temperature limit is essential to the derivation of the master equation itself, thus, we can
say that the stationary solution captures the thermal equilibrium as best as possible for the
non-Lindblad Caldeira–Leggett master equation.

Our previous discussions suggest that the ‘minimally invasive’ term should not affect the
physics significantly. We are not going to explicitly calculate the stationary solutions with this
term, but our subsequent analysis will make it clear that the long time behaviour is identical
to the non-Lindblad case.

3. Time evolution of the free particle system

3.1. Lindblad case

For our analysis, we employed the techniques given in the appendices of [26] and [27], where
they are used for similar purposes. The main feature of our technique is the use of the Wigner
function and the Gaussian ansatz. Details of the calculations can be found in appendix A.

The characteristic function associated with the Wigner function is defined as

ρ̃t (k, x) = tr
(
ρt e

i
h̄
(kq+xp)

)
(13)

with the inversion formulae in the momentum and position basis as

〈p1|ρt |p2〉 = 1

2πh̄

∫
dx e− i

h̄
x(

p1+p2
2 )ρ̃t (p2 − p1, x)

〈q1|ρt |q2〉 = 1

2πh̄

∫
dk e− i

h̄
k(

q1+q2
2 )ρ̃t (k, q1 − q2),

(14)

respectively. For the Lindblad case, V (q) = 0, and a given initial data ρ̃0, the exact time
evolution of the Wigner function is given by

ρ̃t (k, x) = e
−(

kB T

2h̄2mγ
+ γ

8mkB T
)k2t

e
mkB T

2h̄2 [k2 	2
t +2	t

4m2γ 2 −kx
	2
t

mγ
−x2(1−e−4γ t )]

ρ̃0

(
k, x e−2γ t +

	tk

2mγ

)
. (15)

In the long time limit, we expect to find that the density matrix will evolve to the stationary
solution, which, as we have shown, is diagonal in the momentum representation. So, we solve
the time evolution of the density matrix in this representation using (14) and reach

〈p1|ρt |p2〉 = R(t) +

√
1

2πmkBT

1√
1 − e−4γ t

e
−(

kB T

2h̄2mγ
+ γ

8mkB T
)(p2−p1)

2t
e

(	2
t +2	t )kB T

8h̄2mγ 2 (p2−p1)
2

× e
h̄2

2(1−e−4γ t )mkB T
(

i(p1+p2)

2h̄ +
	2
t kB T

2h̄2γ
(p2−p1))

2

ρ̃0

(
p2 − p1,

	t (p2 − p1)

2mγ

)
(16)

4



J. Phys. A: Math. Theor. 42 (2009) 265303 F M Ramazanoglu

where

R(t) = 1

2πh̄
e
−

(
kB T

2h̄2mγ
+ γ

8mkB T

)
(p2−p1)

2t
e

(	2
t +2	t )kB T

8h̄2mγ 2 (p2−p1)
2

×
∫

dx

{
e
− (1−e−4γ t )mkB T

2h̄2 x2−(
i(p1+p2)

2h̄ +
	2
t kB T

2h̄2γ
(p2−p1))x

×
[
ρ̃0

(
p2 − p1, x e−2γ t +

	t(p2 − p1)

2mγ

)
− ρ̃0

(
p2 − p1,

	t (p2 − p1)

2mγ

)] }
.

(17)

As long as ρ̃0(k, x) is bounded and well behaved around
(
p2 − p1,

(p2−p1)

2mγ

)
, R(t) vanishes in

the long time limit. Then, the main observation is that as t → ∞, 〈p1|ρt |p2〉 vanishes except
for the case p2 − p1 = 0, due to the term exp

[−(
kBT

2h̄2mγ
+ γ

8mkBT

)
(p2 − p1)

2t
]
. Using the fact

that ρ̃t (0, 0) = trρt = 1, we finally reach

〈p1|ρ∞|p2〉 =

⎧⎪⎨
⎪⎩

√
1

2πmkBT
e− p2

1
2mkB T p1 = p2

0 otherwise

(18)

which is the stationary solution of the master equation and the thermal equilibrium density
matrix of a free particle (see section 2). Thus, the thermal equilibrium is indeed reached in
the long time limit for the free particle in the Caldeira–Leggett model. Similar results were
also reached in previous studies [6, 7].

All of the asymptotic behaviour of the density matrix can be read off from (16). Let us
start by analysing the remainder term R(t). For large times and for the values of x where the
integrand is significantly different from 0, we can expand series ρ̃0 through the leading term

ρ̃0

(
p2 − p1, x e−2γ t +

	t(p2 − p1)

2mγ

)

− ρ̃0

(
p2 − p1,

	t (p2 − p1)

2mγ

)
≈ ∂ρ̃0(k, x)

∂x

∣∣∣∣
(p2−p1,

(p2−p1)

2mγ
)

x e−2γ t , (19)

given that ρ̃0 is well behaved around x = (p2 − p1)/2mγ and ∂ρ̃0(k, x)/∂x does not vanish
at the point

(
p2 − p1,

(p2−p1)

2mγ

)
. Under these conditions, R(t) is given by

R(t → ∞) ≈ f (p1, p2) e
−(

kB T

2h̄2mγ
+ γ

8mkB T
)(p2−p1)

2t
e−2γ t , (20)

where

f (p1, p2) = − h̄2√
2π(mkBT )3

(
i(p1 + p2)

2h̄
+

kBT

2h̄2γ
(p2 − p1)

)
∂ρ̃0(k, x)

∂x

∣∣∣∣
(p2−p1,

(p2−p1)

2mγ
)

× e
h̄2

2(1−e−4γ t )mkB T
(

i(p1+p2)

2h̄ +
	2
t kB T

2h̄2γ
(p2−p1))

2

e
3(p2−p1)2kB T

8h̄2mγ 2 . (21)

This means, for the non-diagonal elements, R(t) is dying much faster than the non-R(t) term
in (16), due to the extra exponential factor of e−2γ t , and is negligible. Then, the long time
behaviour becomes

〈p1|ρt→∞|p2〉 =
√

1

2πmkBT
e

(p2−p1)2kB T

2h̄2mγ 2 e− (p1+p2)2

8mkB T e
i(p2

2−p2
1 )

4mh̄γ ρ̃0

(
p2 − p1,

p2 − p1

2mγ

)

×e
−

(
kB T

2h̄2mγ
+ γ

8mkB T

)
(p2−p1)

2t
(p1 �= p2) (22)
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which is manifestly exponential. The time constant for relaxation is

τp1,p2 =
(

γ

8mkBT
+

kBT

2h̄2mγ

)−1 1

(p2 − p1)2
= 1

1 +
(

h̄γ

2kBT

)2

2h̄2mγ

kBT (p2 − p1)2
(23)

which leads to the following observations:

(1) In the momentum representation, relaxation to the thermal state becomes faster as one
moves away from the diagonal in the density matrix.

(2) At a first look, relaxation is faster in both high and low temperature limits and is slowest
at T = h̄γ /2kB , but remembering that h̄γ /kBT � 1 should hold for the validity of our
master equation, only the high temperature limit is meaningful and the γ /8mkBT term
can be neglected:

τp1,p2 ≈ 2mh̄2γ

kBT (p2 − p1)2
= 2h̄2

D(p2 − p1)2
. (24)

Here, D = kBT /mγ is the diffusion constant, which can be readily demonstrated using (16)

〈q2〉 = tr(q2ρt ) =
∫

dp〈p|q2ρt |p〉 = −h̄2
∫

dp

(
d2

dq2
〈q|ρt |p〉

)
p=q

= −h̄2
∫

dp

(
−2

(
kBT

2h̄2mγ
+

γ

8mkBT

)
t〈q|ρt |p〉 + time independent terms

)

≈ kBT

mγ
t(t → ∞), (25)

where we again used the fact that the trace of the reduced density matrix is unity. This
reaffirms the previous results [6] and shows the connection between the decay constants and
the diffusion coefficient.

For the diagonal elements, i.e. p1 = p2, there are two sources of correction to (18), one
arising from R(t) and the other from the corrections to the non-R(t) term due to the finiteness
of t. The latter is at the order e−4γ t , as can be seen from (16), so the leading correction comes
from R(t)

〈p|ρt→∞|p〉 ≈
√

1

2πmkBT
e− p2

2mkB T

(
1 − ih̄p

mkBT

∂ρ̃0(k, x)

∂x

∣∣∣∣
(0,0)

e−2γ t

)
, (26)

which shows that the relaxation time for the diagonal elements is τR ∼ 1/γ as expected.

3.2. Non-Lindblad case and comparison

The originally derived master equation for the Caldeira–Leggett model, (3), was not in the
Lindblad form, lacking the ‘minimally invasive’ term − γ

8mkBT
[p, [p, ρt ]]. Not having this

term leads to

〈p1|ρt |p2〉 = R(t) +

√
1

2πmkBT

1√
1 − e−4γ t

e
− kB T

2h̄2mγ
(p2−p1)

2t
e

(	2
t +2	t )kB T

8h̄2mγ 2 (p2−p1)
2

× e
h̄2

2(1−e−4γ t )mkB T
(

i(p1+p2)

2h̄ +
	2
t kB T

2h̄2γ
(p2−p1))

2

ρ̃0

(
p2 − p1,

	t (p2 − p1)

2mγ

)
, (27)

whose origin can be seen in (A.3) (with ω = 0), where the first equation reads ċ1(t) = c2(t)/m

when we use the non-Lindblad master equation. This, in turn leads to the formally simple

change that e− γ (p2−p1)2

8mkB
t term is not present in (16), thus (27) is reached.

6
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This means

(1) Any initial density matrix still evolves into the form in (18) in the long time limit. So in
the long time limit, the non-Lindblad and Lindblad equations give the same result, which
is thermal equilibrium.

(2) Non-diagonal terms still vanish in the long time limit due to the e
− kB T

2h̄2mγ
(p2−p1)

2t
term, but

the decay is slower and the time constant is

τp1,p2 = 2mh̄2γ

kBT (p2 − p1)2
(28)

as opposed to (23). Nevertheless, remembering the condition h̄γ � kBT , we can see
that the missing term in the non-Lindblad case is negligible, so the change in the time
evolution for the non-diagonal terms is negligible.

(3) Since the e− γ (p2−p1)2

8mkB
t term was constant and equal to 1 for the diagonal matrix elements in

the Lindblad form, not having this term does not have any effect. The time evolution of
the diagonal elements of the density matrix is exactly the same as before.

In summary, for the free particle case, Lindblad and non-Lindblad master equations lead
to the same density matrix in the long time limit, which is that of thermal equilibrium.

4. Time evolution of the simple harmonic oscillator system

4.1. Lindblad case

For a general potential

V (q) =
∑
m

amqm, (29)

our current calculation methods are not very useful since they lead to nonlinear differential
equations (see appendix A for more details on this shortcoming, see [8] for a discussion of
general potentials). Still, it is possible to have an analytical solution for the exceptional, but
important, case of the harmonic oscillator. For a system under the potential

V (q) = 1
2mω2q2, (30)

we obtain (see appendix A)

ρ̃t (k, x) = exp

{
−mkBT M3(t)

2h̄2 x2

}
exp

{
− kBT

2h̄2mω2

[
M1(t)k

2 +
2mω2

γ
M2(t)kx

]}
(31)

ρ̃0

(
e−(γ−μ)t�t

2μ
((μ coth μt + γ )k − mω2x),

e−(γ−μ)t�t

2μ

(
(μ coth μt − γ )x +

k

m

))
,

where μ ≡
√

γ 2 − ω2,�t ≡ 1−e−2μt and Mi are dimensionless functions with the asymptotic
behaviours

M1(t → ∞) = 1 +

(
h̄γ

2kBT

)2

+

(
h̄ω

4kBT

)2

+ O(e−Re{2γ−μ}t )

M2(t → ∞) = −1

8

(
h̄γ

kBT

)2

+ O(e−Re{2γ−μ}t ) (32)

M3(t → ∞) = 1 +

(
h̄ω

4kBT

)2

+ O(e−Re{2γ−μ}t ).

7
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For the case of the harmonic oscillator, we will use the position representation where the
thermal equilibrium density matrix is given by (11). Using the inversion formula (14), we
reach the central result

〈q1|ρt |q2〉 = RHO(t) +

√
mω2

2πkBT M1(t)
e− mkB T M3(t)

2h̄2 (q1−q2)
2

e
h̄2mω2

2kB T M1(t)
(

i(q1+q2)

2h̄ + kB T M2(t)(q1−q2)

h̄2γ
)2

, (33)

with

RHO(t) = 1

2πh̄
e− mkB T M3(t)

2h̄2 (q1−q2)
2
∫

dk e
− kB T M1(t)

2h̄2mω2 k2−(
i(q1+q2)

2h̄ + kB T M2(t)(q1−q2)

h̄2γ
)k
(ρ̃0(k

′, x ′) − 1) (34)

where

k′ = e−(γ−μ)t�t

2μ
((μ coth μt + γ )k − mω2(q1 − q2))

x ′ = e−(γ−μ)t�t

2μ

(
(μ coth μt − γ )(q1 − q2) +

k

m

)
.

Assuming that ρ̃0 is well behaved around (0, 0), we again have a vanishing remainder term,
RHO(t → ∞) = 0. This means, in the infinite time limit

〈q1|ρ∞|q2〉 =
(

mω2

2πkBT

)1/2
[

1+

(
h̄γ

2kBT

)2

+

(
h̄ω

4kBT

)2
]−1/2

e− mω2

8kB T
[1+(

h̄γ

2kB T
)2+( h̄ω

4kB T
)2]−1(q1+q2)

2

× e− mkB T

2h̄2 [1+( h̄ω
4kB T

)2+( h̄ω
4kB T

)2(
h̄γ

2kB T
)2[1+(

h̄γ

2kB T
)2+( h̄ω

4kB T
)2]−1](q1−q2)

2

× e−i mω2

16kB T
(

h̄γ

kB T
)[1+(

h̄γ

2kB T
)2+( h̄ω

4kB T
)2]−1(q2

1 −q2
2 )
. (35)

This result does not exactly agree with the thermal equilibrium density matrix (11) or with
the stationary solution to the non-Lindblad master equation (9). Nevertheless, conditions
for the validity of the master equation imply that h̄γ /kBT � 1 and h̄ω/kBT � 1. Also,
mω2q2 ∼ h̄ω and

e−i mω2

16kB T
(

h̄γ

kB T
)(q2

1 −q2
2 ) ≈ e−i( h̄ω

16kB T
)(

h̄γ

kB T
) ≈ 1 (36)

for the typical length scales we encounter in the harmonic oscillator system. Putting all these
conditions together:

〈q1|ρ∞|q2〉 ≈
√

mω2

2πkBT
e− mω2

8kB T
(q1+q2)

2

e− mkB T

2h̄2 (q1−q2)
2

. (37)

So, the density matrix approaches the stationary solution (9) under the validity conditions
of our master equation. Also, remember that the stationary solution agrees with the thermal
equilibrium density matrix of the harmonic oscillator only on the diagonal and to the leading
order in h̄ω/kBT . Overall, these results agree with the previous findings in [6, 7].

Let us now analyse the corrections to the infinite time matrix elements. Assuming ρ̃0 is
well behaved around (0, 0) and defining ∂ρ̃0(k, x)/∂k|(0,0) ≡ Dk and ∂ρ̃0(k, x)/∂x|(0,0) ≡ Dx ,
the remainder term has the long time behaviour

RHO(t) ≈ e−(γ−μ)t

√
mω2

2πkBT M1(t)
e− mkB T M3(t)

2h̄2 (q1−q2)
2

e
h̄2mω2

2kB T M1(t)
(

i(q1+q2)

2h̄ + kB T M2(t)(q1−q2)

h̄2γ
)2

× ((μ coth μt + γ )Dk + (Dx/m))
�t

2μ

(
−h̄mω2 (4ikBT (q1 + q2) − h̄γ (q1 − q2))

8k2
BT 2

+
−mω2Dk + (μ coth μt − γ )Dx

(μ coth μt + γ )Dk + (Dx/m)
(q1 − q2)

)
(38)
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In the long time limit, again there are two sources of correction to the infinite time values of the
matrix elements. The first is from RHO which is exponentially small compared to the matrix
element by e−Re{γ−μ}t , as seen in (38). The second correction comes from the corrections to
the non-RHO term due to the finiteness of t in (33), which mainly arises from Mi(t) − Mi(∞),
and is at the order e−Re{2γ−μ}t as seen in (32). Thus, after a sufficiently long time, the latter
correction becomes negligible compared to the former unless RHO vanishes, which is only
possible for a special combination of the values of Dk and Dx . That is, the leading correction
to (35) is (38), which dies out with a time constant of 1/Re{γ − μ}. In summary

(1) If ω > γ,μ is imaginary, and the relaxation time constant is 1/Re{γ − μ} = 1/γ as
expected.

(2) If ω < γ,μ is real and μ < γ , so relaxation still occurs but at the slower rate of

e−(γ−
√

γ 2−ω2)t . The time constant behaves as ∼ γ

ω2 as ω
γ

approaches 0.

4.2. Non-Lindblad case and comparison

If we were to use the non-Lindblad master equation, than the only change would be that we
would have no − γ

8mkBT
k2ρ̃t (k, x) term in the master equation for the Wigner function (A.1),

or equivalently, no γ /8mkBT term for ċ1 in (A.3), as in the case of the free particle. Effects of
this can be easily traced by having kBT → ∞ and h̄ → ∞ while keeping h̄2/kBT constant.
This way, γ /8mkBT → 0, with all other coefficients in the differential equations remaining
the same, giving us the non-Lindblad equation. Then

h̄ω

kBT
= h̄2

kBT

ω

h̄
→ 0,

h̄γ

kBT
= h̄2

kBT

γ

h̄
→ 0, (39)

that is, in this limit, terms of O(h̄γ /kBT ) or O(h̄ω/kBT ) in the expressions for Mi , (32),
vanish. Thus, without any approximations

〈q1|ρ∞|q2〉 =
√

mω2

2πkBT
e− mω2

8kB T
(q1+q2)

2

e− mkB T

2h̄2 (q1−q2)
2

. (40)

This was expected, since the non-Lindblad master equation was anticipated to reach its
stationary solution exactly, rather than approximately. This result was also reached in [11],
where they also show that the density matrix is diagonal in the energy basis of the system
harmonic oscillator, supporting the idea of the pointer states of Paz and Zurek [28].

For the non-Lindblad master equation, The leading correction to the thermal equilibrium
density matrix at large times is the same as the Lindblad case and originates from RHO(t).
Thus it is O(e−Re{γ−μ}t ).

To sum up, the Lindblad case infinite time density matrix is considerably more complex
compared to the non-Lindblad case, if we compare the exact solutions. However, once the
limits of the derivation of our master equations are taken into account, we can see that the two
cases completely agree in the leading terms for which our equations are sensitive. Moreover,
the time constants that control the approach to equilibrium are also the same for both cases.
Hence, once again we see that the introduction of the ‘minimally invasive’ term to the master
equation does not significantly affect the long time characteristics.

We should also note that we have not explicitly calculated the stationary solution of the
harmonic oscillator for the Lindblad case, so we cannot definitively say that the stationary
solution is reached in the infinite time limit for this case. However, all our findings strongly
suggest that (35) is the stationary solution for the Lindblad master equation of the harmonic
oscillator.

9
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5. Conclusions

We have solved the complete time evolution of the Caldeira–Leggett model for the free
particle and the harmonic oscillator, and shown that the reduced density matrix of the system
approaches the exact thermal equilibrium for the free particle and an approximate thermal
equilibrium for the harmonic oscillator in the long time limit, confirming the previous results
in the field. The detailed study of the infinite time limit and the deviations from this at finite
times showed that the Lindblad and non-Lindblad master equations do not differ in this aspect.
This was the expected result since the main problem of the non-Lindblad equation, lacking
positivity on short timescales, should not make a difference at the investigated limit.

We note that the methods we used, the characteristic function of the Wigner function and
the Gaussian ansatz, can be utilized for more complex cases. We gave a treatment of the most
general case in the appendices for the sake of generality.
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Appendix A. Green’s function for the harmonic oscillator system

Here, we will give the details of the calculation that leads to (31). The case for the free particle
and the non-Lindblad master equations are similar. Our treatment closely follows [26].

The master equation for a system under a quadratic potential V (q) = 1
2mω2q2 translates

to the following differential equation for ρ̃t (k, x):

∂

∂t
ρ̃t (k, x) =

(
1

m
k

∂

∂x
− mω2x

∂

∂k
− 2γmkBT

h̄2 x2 − γ

8mkBT
k2 − 2γ x

∂

∂x

)
ρ̃t (k, x). (A.1)

The first key observation is that, under (A.1), initially Gaussian states remain Gaussian. If we
make the ansatz

ρ̃t (k, x) = exp{−c1k
2 − c2kx − c3x

2 − ic4k − ic5x − c6}, (A.2)

then the master equation, upon equating the coefficients of the independent terms, leads to a
linear system of differential equations for ci(t),

ċ1(t) = c2(t)

m
+

γ

8mkBT

ċ2(t) = 2c3(t)

m
− 2γ c2(t) − 2mω2c1(t)

ċ3(t) = 2γmkBT

h̄2 − 4γ c3(t) − mω2c2(t)

ċ4(t) = c5(t)

m
ċ5(t) = −2γ c5(t) − mω2c4(t)

ċ6(t) = 0.

(A.3)

10
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Hence, we can calculate the exact time evolution of ρ̃t if the initial data is Gaussian.
The second key observation is that knowing the solution for given Gaussian initial data, we

can solve the problem for any initial condition using the Green’s function G̃(k, x, t; k0, x0, 0)

ρ̃t (k, x) =
∫

dk0 dx0G̃(k, x, t; k0, x0, 0)ρ̃0(k0, x0). (A.4)

G̃ is defined as the solution to (A.1) that satisfies the initial condition

lim
t→0

G̃(k, x, t; k0, x0, 0) = δ(k − k0)δ(x − x0). (A.5)

A Gaussian of the form

ρ̃
k0x0,εη

0 (k, x) = 1

π
√

εη
e− 1

ε
(k−k0)

2
e− 1

η
(x−x0)

2

(A.6)

has the limit

ρ̃
k0x0,εη

0 (k, x)−−−−→
ε,η→0

δ(k − k0)δ(x − x0), (A.7)

hence if we solve for the initial data of (A.6) using the equations for ci(t) and take the desired
limit, we obtain the Green’s function. The system of equations for ci(t) is quite cumbersome
to solve by hand, unlike the case of the free particle in [26], hence we used Mathematica© to
solve it and the final result is

G̃(k, x, t; k0, x0, 0) = δ

(
k0 − e−(γ−μ)t�t

2μ
((μ coth μt + γ )k − mω2x)

)

× δ

(
x0 − e−(γ−μ)t�t

2μ

(
(μ coth μt − γ )x +

k

m

))

× exp

{
− kBT

2h̄2mω2

[
M1(t)k

2 +
2mω2

γ
M2(t)kx + m2ω2M3(t)x

2

]}
, (A.8)

where μ ≡
√

γ 2 − ω2,�t ≡ 1 − e−2μt . By integrating as in (A.4), we finally get

ρ̃
k0x0,εη
t (k, x) = 1

π
√

εη
e− 1

ε
[k0− e−(γ−μ)t �t

2μ
((μ coth μt+γ )k−mω2x)]2

× e− 1
η

[x0− e−(γ−μ)t �t
2μ

((μ coth μt−γ )x+ k
m

)]2

× e− kB T

2h̄2mω2 [M1(t)k
2+ 2mω2

γ
M2(t)kx+m2ω2M3(t)x

2]
, (A.9)

where

M1(t) = − 1

μ2
[(e−2γ t cosh 2μt − 1)γ 2 + 	tω

2 + e−2γ t sinh 2μtγμ]

− h̄2

16k2
BT 2μ2

[4(e−2γ t cosh 2μt − 1)γ 4 − 3(e−2γ t cosh 2μt − 1)γ 2ω2

+ 	tω
4 + 4 e−2γ t sinh 2μtγ 3μ − e−2γ t sinh 2μt γω2μ]

M2(t) = γ 2

2μ2
e−2(γ−μ)t�2

t +
h̄2γ 2

16k2
BT 2μ2

[2(e−2γ t cosh 2μt − 1)γ 2

− (e−2γ t + e−2γ t cosh 2μt − 2)ω2 + 2 e−2γ t sinh 2μt γμ]

M3(t) = 1

μ2
[−(e−2γ t cosh 2μt − 1)γ 2 − 	tω

2 + e−2γ t sinh 2μt γμ]

− h̄2ω2

16k2
BT 2μ2

[(e−2γ t cosh 2μt − 1)γ 2 + 	tω
2 + e−2γ t sinh 2μt γμ]. (A.10)
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Taking the limits ε → 0 and η → 0, we obtain (31).
Let us also explain why we employed the Wigner function. In the position representation,

ρt (q1, q2) = 〈q1|ρt |q2〉, (4) is

∂ρt (q1, q2)

∂t
=

[
ih̄

2m

(
∂2

∂q2
1

− ∂2

∂q2
2

)
− i

h̄
(V (q1) − V (q2)) − 2γmkBT

h̄2 (q1 − q2)
2

+
h̄2γ

8mkBT

(
∂

∂q1
− ∂

∂q2

)2

− γ (q1 − q2)

(
∂

∂q1
− ∂

∂q2

) ]
ρt (q1, q2) (A.11)

Since this equation is second order in q1, q2 and their derivatives, we can propose a Gaussian
ansatz, ρt (q1, q2) = exp{−c1q

2
1 − c2q1q2 − c3q

2
2 − ic4q1 − ic5q2 − c6}, without using the

characteristic function associated with the Wigner function. This will lead to a set of coupled
differential equations which are nonlinear due to the double derivative terms, e.g.

∂2

∂q2
1

ρt (q1, q2) = [(−2c1q1 − c2q2 − ic4)
2 − 2c1]ρt (q1, q2). (A.12)

Thus they will be much more cumbersome to solve compared to those we solve for the Wigner
function.

In short, any equation of the form (A.11) that contains double derivatives leads to a
nonlinear system of differential equations for ci when we employ a Gaussian ansatz. This is
the basic reason for using the characteristic function associated with the Wigner function to
solve the evolution problem, where we solve a linear system of differential equations for ci .
See appendix C for more discussions.

Appendix B. The free particle as the limit of the harmonic oscillator

Note that the harmonic oscillator Hamiltonian gives the free particle Hamiltonian in the ω → 0
limit, so we expect the Green’s function and the density matrix of the harmonic oscillator to
converge to those of the free particle in this limit. Thus, one can obtain the results for the free
particle by first solving the problem for the harmonic oscillator and then taking the said limit.
In our strategy, we will rather use this correspondence as an independent check of our results.
Using Taylor series, we can expand Mi(t) around ω = 0. After some lengthy calculations,
one obtains

M1(t) = tγ (h2β2γ 2 + 4) − (3 − 4 e−2tγ + e−4tγ )

4γ 2
ω2 + O(ω4)

M2(t) = 1

2
	2

t + O(ω2) (B.1)

M3(t) = (1 − e−4γ t ) + O(ω2).

Note also that μ → γ in the vanishing ω limit. Then, it is trivial to recover (15) by inserting
the above expressions into (A.9) and taking the ω → 0 limit.

Appendix C. The most general case for the Gaussian ansatz

In this appendix, we discuss the most general equation for which the Gaussian ansatz can be
employed.

12
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Gaussian ansatz is applicable to any equation of the form

∂ft (k, x)

∂t
=

[
A + Bk + Cx + D

∂

∂k
+ E

∂

∂x
+ Fk2 + Gkx + Hx2 + Lk

∂

∂k

+ Mk
∂

∂x
+ Nx

∂

∂k
+ Px

∂

∂x
+ Q

∂2

∂k2
+ R

∂2

∂k∂x
+ S

∂2

∂x2

]
ft (k, x). (C.1)

We argued in appendix A that we have to solve a nonlinear system of differential equations
unless Q,R, S = 0. One special case we can avoid nonlinearity is when F,G,H = 0. In
that case, we can Fourier transform f in both k and x, and since the Fourier transform converts
differentiation into multiplication, we do not have second-order derivatives in the transformed
equation. A single Fourier transformation can also be useful when F,R, S = 0 and Q �= 0,
or H,Q,R = 0 and S �= 0. Roy and Venugopalan successfully use this approach in [11] to
solve the time evolution of the harmonic oscillator density matrix for the non-Lindblad master
equation, after certain change of coordinates in the position representation. However, if the
‘minimally invasive’ term is introduced (which they do not attempt to do), their method cannot
avoid having a second-order derivative. For the rest of our discussion, we will set Q,R, S = 0
and use the shorthand notation

∂ft (k, x)

∂t
= D(A,B,C,D,E, F,G,H,L,M,N,P )ft (k, x). (C.2)

When we propose a Gaussian ansatz of the form (A.2), we reach the following system of
coupled linear equations:⎛
⎜⎜⎜⎜⎜⎜⎜⎝

ċ1(t)

ċ2(t)

ċ3(t)

ċ4(t)

ċ5(t)

ċ6(t)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

2L M 0 0 0 0
2N L + P 2M 0 0 0
0 N 2P 0 0 0

−2iD −iE 0 L M 0
0 −iD −2iE N P 0
0 0 0 iD iE 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

c1

c2

c3

c4

c5

c6

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

−F

−G

−H

iB
iC
−A

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (C.3)

This is a system of inhomogeneous ordinary linear differential equations which can be solved
by basic methods, but the dimension of the matrix makes the solution intractable from a
calculational point of view, even for mathematical software packages.

The first observation that makes the calculation considerably easier is that c1, c2, c3 form
an independent system of equations. This means, we can first solve for these three, then insert
the solutions into the equations for c4 and c5 and solve the inhomogeneous equations for these
two variables. We can finally insert c4, c5 into the equation for c6 and find the solution by
simple integration. This approach is tractable for Mathematica©, but the solutions are rather
lengthy and give us little insight.

The crucial step that simplifies (C.3) is that by an affine transformation of the variables
k, x in (C.1), we can set the coupling terms D,E,M,N to 0 for most cases, and have a
diagonal matrix in (C.3). Let us define the variables l, y such that

k = l + ay x = bl + y, (C.4)

which together with the scaling and swapping (k ↔ x) can account for all linear
transformations. This leads to the equation

∂f
(ly)
t (l, y)

∂t
= D(A′, B ′, C ′,D′, E′, F ′,G′,H ′, L′,M ′, N ′, P ′)f (ly)

t (l, y) (C.5)
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with

M ′ = 1

1 − ab
(−bL + M − b2N + bP )

N ′ = 1

1 − ab
(aL − a2M + N − aP ).

(C.6)

By choosing

a = (L − P) +
√

(L − P)2 + 4MN

2M

b = −(L − P) −
√

(L − P)2 + 4MN

2N

(C.7)

if M and N are both nonzero, and

a = 0 b = M

L − P
(C.8)

if N = 0 (the case of M = 0 is similar), we can set M ′ and N ′ to 0. The signs of the roots of
the quadratics are chosen such that ab �= 1, which ensures the linear independence of l and y.
Note that this procedure cannot be used if MN = 0 and L = P .

Once we set M ′, N ′ = 0, given that L′ and P ′ are nonzero, we can shift our variables as

m ≡ l +
D′

L′ z ≡ y +
E′

P ′ , (C.9)

which puts our equation into the form

∂f
(mz)
t (m, z)

∂t
= D(A′′, B ′′, C ′′, 0, 0, F ′,G′,H ′, L′, 0, 0, P ′)f (mz)

t (m, z). (C.10)

This equation leads to six inhomogeneous ordinary differential equations which are not coupled
and thus can be solved quite easily. One can further simplify the equations if F ′ �= 0, by
scaling k → √

F ′k to set the coefficient of the k2 term to 1. By defining the function
f̃

(mz)
t = f

(mz)
t eA′′t , the constant term A′′ can also be set to 0.

The special cases we did not discuss, e.g. MN = 0 and P = L, can also be handled
using similar techniques. Above transformations do not work when certain coefficients vanish
or are equal to each other in (C.1), e.g N = 0 and P = L. In these cases, solving (C.3) is
already much easier before any affine transformation of the arguments of f . In short, using a
Gaussian ansatz allows us to solve any equation in the form of (C.1) without much trouble, as
long as no nonlinear terms arise.
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